Peggy Ryan Williams Center

Ithaca, New York

Angela Mincemoyer | Structural Dr. Boothby

Site and Location Plan

Ithaca, New York

Photo provided courtesy of Holt Architects

General Information

- Occupant
 - Ithaca College
- Occupancy
 - Office Use
- Size
 - > 58,200 gross square feet
- Stories
 - 4 stories
- Substantial Completion
 - March 2010

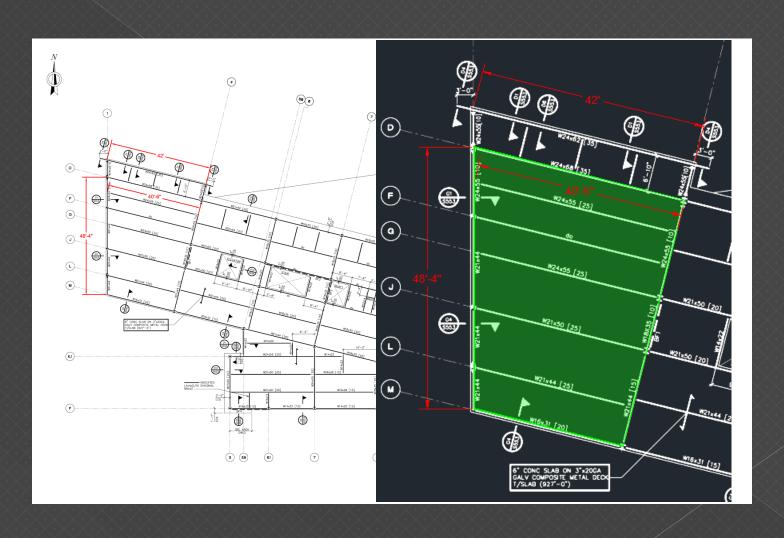


Photo provided courtesy of Holt Architects

Existing Structural System

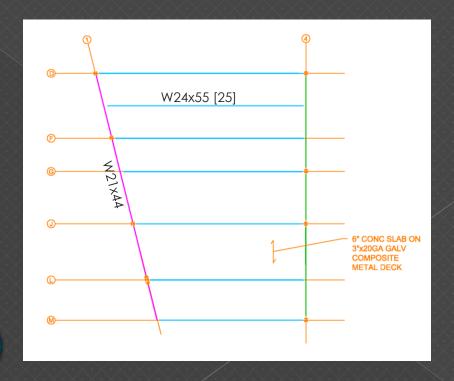
- Steel Framing
 - Composite metal deck
 - Wide flange beams, girders, and columns
 - Most beams and girders are composite action
- Lateral System
 - Concentrically braced structural steel frames

Typical Floor Plan/Typical Bay

Gravity Spot Checks

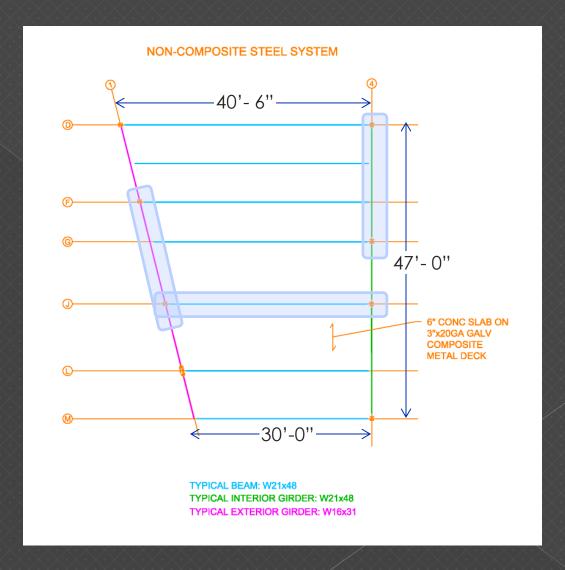
Deck Checks

- Shoring
 - May be unshored for 2 and 3 span conditions
- Strength
- Beam Checks



- Strength
- Shoring
 - No shoring is required for strength
- Wet concrete deflections
- > Live load deflections
- Girder Checks

- Strength
- Deflections
- Interior & Exterior Columns


Alternative Framing Systems

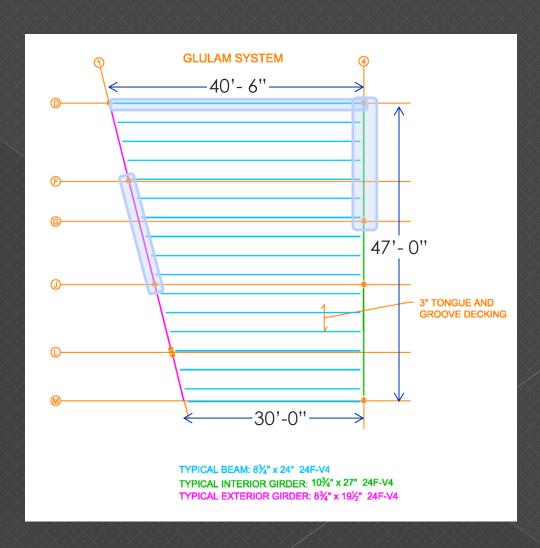
- Typical Bay used includes a cantilever
 - > Made more "typical" by removing cantilever
 - > Briefly mention how to design for cantilever
- Alternatives
 - Non-Composite Steel
 - > Glulam
 - > Prestressed Concrete
 - Post-tensioned slab
 - Reinforced Concrete Beams

Non-Composite Steel

- Existing Deck
- Existing beam/girder layout
 - Avoids moving/adding columns

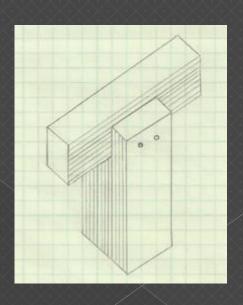
Non-Composite Steel

- Advantages:
 - Works well if use precast concrete plank floor system
 - Cantilevers
- Cantilever design
 - Moment Connections
- Possible Lateral Systems
 - Concentrically braced structural steel frames


- Disadvantages:
 - Not economical (not as much strength for \$\$)
 - Deeper
 - Floor vibrations

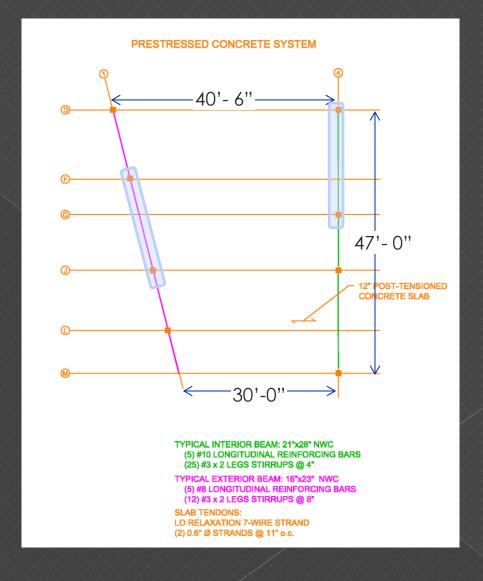
- Better than existing composite system?
 - > No!
 - Even though this system is possible, it is not recommended.

Glulam


- 3" Tongue & Grove Decking
- Typical beams spaced @ 3'-0"
- Existing girder layout
 - Avoids moving/adding columns

Glulam

- Advantages:
 - Lighter
 - > 1 hour fire rating
 - Cheaper
- Cantilever design
 - Continuous girder
- Possible Lateral Systems
 - > Wood moment frame
 - Wood shear walls
 - Current system
 - Concentrically braced steel frame
- Better than existing composite system?
 - Further investigation is required.


- Disadvantages:
 - Depth
 - > Floor vibrations
 - Connections

Prestressed Concrete

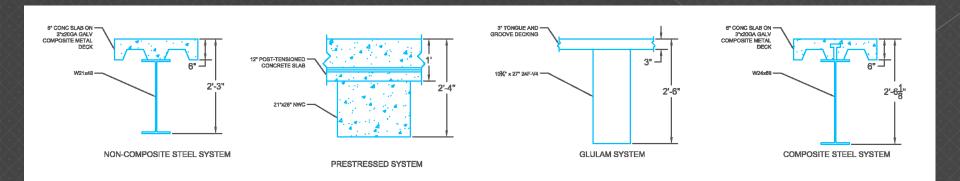
- One way posttensioned concrete slab

 - > f'ci = 3500 psi
- Existing girder layout used for beams
 - Avoids moving/adding columns
 - f'c = 4000 psi

Prestressed Concrete

- Advantages:
 - > More shallow
 - 2 hour fire rating
 - Long spans
- Cantilever design
 - > Continuous beam
- Possible Lateral Systems
 - > Shear walls
 - Moment frame

- Disadvantages:
 - Heavier



- Better than existing composite system?
 - > Further investigation is required.

Overall Comparison

Considerations	System							
	Composite Steel (Existing System)	Rank	Non-Composite Steel	Rank	Glulam	Rank	Prestressed Concrete (Post-tensioned Slab)	Rank
General								
Cost (\$/SF)	\$25.88	3	\$35.31	4	\$8.74	1	\$23.48	2
System Weight (psf)	74.79	3	66.13	2	22.90	1	179.81	4
Durability	acceptable	1	acceptable	1	acceptable	1	acceptable	1
Architectural								
System Depth (in)	30.125	4	27	1	30	3	28	2
Additional Fire Proofing Req'd	none		none		none		none	
Fire Rating (hours)	0	3	0	3	1**	1	2	2
Conclusion								
Viable?	yes	14	yes (not recommened)	11	yes	7	yes	11
Future Investigation?	n/a		no		yes		yes	

^{*}NOTE: PRWC is Type IIB Construction Type → According to IBC 2009 Section 601 (Table 601), no additional fire proofing is required on structural elements.

^{**} Glulam is rated at 1 hour. After this 1 hour, 1.5" have been charred and the structural element is no longer reliable.

Thank You

Photo provided courtesy of Holf Architects